The missing link between thermodynamics and structure in F1-ATPase.
نویسندگان
چکیده
F(1)F(o)-ATP synthase is the enzyme responsible for most of the ATP synthesis in living systems. The catalytic domain F(1) of the F(1)F(o) complex, F(1)-ATPase, has the ability to hydrolyze ATP. A fundamental problem in the development of a detailed mechanism for this enzyme is that it has not been possible to determine experimentally the relation between the ligand binding affinities measured in solution and the different conformations of the catalytic beta subunits (beta(TP), beta(DP), beta(E)) observed in the crystal structures of the mitochondrial enzyme, MF(1). Using free energy difference simulations for the hydrolysis reaction ATP+H(2)O --> ADP+P(i) in the beta(TP) and beta(DP) sites and unisite hydrolysis data, we are able to identify beta(TP) as the "tight" (K(D) = 10(-12) M, MF(1)) binding site for ATP and beta(DP) as the "loose" site. An energy decomposition analysis demonstrates how certain residues, some of which have been shown to be important in catalysis, modulate the free energy of the hydrolysis reaction in the beta(TP) and beta(DP) sites, even though their structures are very similar. Combined with the recently published simulations of the rotation cycle of F(1)-ATPase, the present results make possible a consistent description of the binding change mechanism of F(1)-ATPase at an atomic level of detail.
منابع مشابه
Single molecule thermodynamics of ATP synthesis by F1-ATPase
FoF1-ATP synthase is a factory for synthesizing ATP in virtually all cells. Its core machinery is the subcomplex F1-motor (F1-ATPase) and performs the reversible mechanochemical coupling. Isolated F1-motor hydrolyzes ATP, which is accompanied by unidirectional rotation of its central γ-shaft. When a strong opposing torque is imposed, the γ-shaft rotates in the opposite direction and drives the ...
متن کاملExperimental thermodynamics of single molecular motor
Molecular motor is a nano-sized chemical engine that converts chemical free energy to mechanical motions. Hence, the energetics is as important as kinetics in order to understand its operation principle. We review experiments to evaluate the thermodynamic properties of a rotational F1-ATPase motor (F1-motor) at a single-molecule level. We show that the F1-motor achieves 100% thermo dynamic effi...
متن کاملNitration of tyrosine residues 368 and 345 in the beta-subunit elicits FoF1-ATPase activity loss.
Tyrosine nitration is a covalent post-translational protein modification associated with various diseases related to oxidative/nitrative stress. A role for nitration of tyrosine in protein inactivation has been proposed; however, few studies have established a direct link between this modification and loss of protein function. In the present study, we determined the effect of nitration of Tyr34...
متن کاملPsychological Therapies: The Missing Link in Improving Treatment Adherence in Patients with β-thalassemia Major
متن کامل
Structural similarity between the flagellar type III ATPase FliI and F1-ATPase subunits.
Construction of the bacterial flagellum in the cell exterior proceeds at its distal end by highly ordered self-assembly of many different component proteins, which are selectively exported through the central channel of the growing flagellum by the flagellar type III export apparatus. FliI is the ATPase of the export apparatus that drives the export process. Here we report the 2.4 A resolution ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 100 3 شماره
صفحات -
تاریخ انتشار 2003